Package: geessbin 1.0.0

geessbin: Modified Generalized Estimating Equations for Binary Outcome

Analyze small-sample clustered or longitudinal data with binary outcome using modified generalized estimating equations (GEE) with bias-adjusted covariance estimator. The package provides any combination of three GEE methods and 12 covariance estimators.

Authors:Ryota Ishii [aut, cre], Tomohiro Ohigashi [ctb], Kazushi Maruo [ctb], Masahiko Gosho [ctb]

geessbin_1.0.0.tar.gz
geessbin_1.0.0.zip(r-4.5)geessbin_1.0.0.zip(r-4.4)geessbin_1.0.0.zip(r-4.3)
geessbin_1.0.0.tgz(r-4.4-any)geessbin_1.0.0.tgz(r-4.3-any)
geessbin_1.0.0.tar.gz(r-4.5-noble)geessbin_1.0.0.tar.gz(r-4.4-noble)
geessbin_1.0.0.tgz(r-4.4-emscripten)geessbin_1.0.0.tgz(r-4.3-emscripten)
geessbin.pdf |geessbin.html
geessbin/json (API)
NEWS

# Install 'geessbin' in R:
install.packages('geessbin', repos = c('https://rtishii.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/rtishii/geessbin/issues

Datasets:

On CRAN:

2.70 score 6 scripts 182 downloads 3 exports 1 dependencies

Last updated 2 months agofrom:7c220a6dd5. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:geessbingeessbin_allsqrtmat

Dependencies:MASS