Package: geessbin 1.0.0

geessbin: Modified Generalized Estimating Equations for Binary Outcome

Analyze small-sample clustered or longitudinal data with binary outcome using modified generalized estimating equations (GEE) with bias-adjusted covariance estimator. The package provides any combination of three GEE methods and 12 covariance estimators.

Authors:Ryota Ishii [aut, cre], Tomohiro Ohigashi [ctb], Kazushi Maruo [ctb], Masahiko Gosho [ctb]

geessbin_1.0.0.tar.gz
geessbin_1.0.0.zip(r-4.5)geessbin_1.0.0.zip(r-4.4)geessbin_1.0.0.zip(r-4.3)
geessbin_1.0.0.tgz(r-4.5-any)geessbin_1.0.0.tgz(r-4.4-any)geessbin_1.0.0.tgz(r-4.3-any)
geessbin_1.0.0.tar.gz(r-4.5-noble)geessbin_1.0.0.tar.gz(r-4.4-noble)
geessbin_1.0.0.tgz(r-4.4-emscripten)geessbin_1.0.0.tgz(r-4.3-emscripten)
geessbin.pdf |geessbin.html
geessbin/json (API)
NEWS

# Install 'geessbin' in R:
install.packages('geessbin', repos = c('https://rtishii.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/rtishii/geessbin/issues

Datasets:

On CRAN:

Conda:

2.70 score 6 scripts 225 downloads 3 exports 1 dependencies

Last updated 7 months agofrom:7c220a6dd5. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 05 2025
R-4.5-winOKMar 05 2025
R-4.5-macOKMar 05 2025
R-4.5-linuxOKMar 05 2025
R-4.4-winOKMar 05 2025
R-4.4-macOKMar 05 2025
R-4.4-linuxOKMar 05 2025
R-4.3-winOKMar 05 2025
R-4.3-macOKMar 05 2025

Exports:geessbingeessbin_allsqrtmat

Dependencies:MASS